An electromechanical material testing system for in situ electron microscopy and applications.

نویسندگان

  • Yong Zhu
  • Horacio D Espinosa
چکیده

We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ TEM electromechanical testing of nanowires and nanotubes.

The emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic ...

متن کامل

In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires.

Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechani...

متن کامل

Synthesis, Characterization, and Efficiency Testing of Ag3PO4/TiO2 Heterogeneous Nano-Photocatalyst in Removing Gaseous Formaldehyde as an Occupational Carcinogen

Introduction: Rapid population growth and industrialization have increased chemical pollutants. Some studies show that employee exposure to formaldehyde in industrial places, hospitals, and laboratory settings is more than the allowed limits. Therefore, it is necessary to implement a proper control system to reduce this exposure. This study aimed to synthesize Ag3PO4/TiO2 nanocomposite, determi...

متن کامل

Nano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications

Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...

متن کامل

In situ probing of electromechanical properties of an individual ZnO nanobelt

We report here, an investigation on electrical and structural-microstructural properties of an individual ZnO nanobelt via in situ transmission electron microscopy using an atomic force microscopy AFM system. The I-V characteristics of the ZnO nanobelt, just in contact with the AFM tip indicates the insulating behavior, however, it behaves like a semiconductor under applied stress. Analysis of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 41  شماره 

صفحات  -

تاریخ انتشار 2005